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Abstract – 

Task scheduling (TS) is a prominent process in cloud systems. The inappropriate selection of task 

scheduling procedures degrades the performance of cloud systems. Different optimization techniques are 

used for resolving task scheduling problems. However, these techniques consider bandwidth and 

execution parameters for allocating resources. These parameters did not handle the execution delay 

problem related to task submission duration. Therefore, this paper proposes the Genetic Dove Swarm 

Optimization (GDSO) algorithm, a hybrid technique for solving the multi-objective problem of TS in IaaS 

cloud services. The GDSO technique is developed by integrating Genetic Algorithm (GA) and Dove 

Swarm Optimization (DSO) technique. This method provides maximum quality-of-service (QoS) and 

curtails execution delay problems. Here, problems occurred in TS is taken as NP-complete problem, and 

the proposed GDSO resolve this problem based on multiple parameters like execution time, consumption 

of energy, response time and the total expected cost. As a result, GDSO allocates the tasks effectively 

without execution delay. The performance of GDSO is evaluated utilizing the CloudSim tool, and it 

observed that GDSO is more suitable for scheduling tasks in cloud systems than the compared methods, 

with better energy consumption, execution time, execution cost and response time. 

Keywords: Task Scheduling, Genetic Dove Swarm Optimization, Genetic Algorithm, multi-objective, 

execution delay problem, CloudSim. 

 

1. INTRODUCTION 

In the distributed computing field, cloud computing is considered an emerging technology. Applications 

like data storage, management and processing are done with cloud computing. Cloud data is spread across 

multiple servers linked together via networked resources and is accessed using virtual machines 

[1]. Cloud computing offers many services, which include Platform as a Service (PaaS), Software as a 

Service (SaaS) and Infrastructure as a Service (IaaS) [2]. PaaS is deployed in cities or particular 

organizations and comes under the private cloud category. In contrast, SaaS permits service provision 

within the country and is considered a public cloud. The combination of public and private clouds is IaaS 

which has the benefit of services of public and private clouds. The increased usage of cloud services 

resulted in reduced throughput. This diminishes the efficiency of the cloud system. In addition, a practical 

TS algorithm must be selected to ensure the quality of service of the cloud system [3]. TS is performed to 

improve the resource utilization ability, which maps the task to a particular VM. 

The task scheduling must reduce the system’s makespan to provide better service quality. Therefore 

discovering the optimal solutions for task scheduling problems is recognized as the NP-Complete [4]. The 

near-optimal solution for the NP-Complete problem is obtained by exploring the large solution search 

space using metaheuristic algorithms. These large-scale problems are recently solved utilizing heuristic 

as well as metaheuristic algorithms. In general, Ant Colony Optimization (ACO) [5], Artificial Bee 

Colony (ABC), GA, Bat algorithm and Particle Swarm Optimization (PSO) are used for task scheduling 

[6]. However, it has some limitations due to its high computational time and improper balancing of global 

and local search procedures. These algorithms are often trapped in local optima and imbalance between 

the search procedures resulting in premature convergence. Moreover, the heuristic algorithm not improves 



 
 

 
17                                                      Vol.19, No.02(IV), July-December :  2024 

 

the solution quality for large-scale problems. Metaheuristic algorithms solve complex optimization-

related problems but are often trapped in local optima problems. Hence it requires more memory and 

reduces the convergence rate [7]. This limitation affects the performance of task scheduling. Therefore, 

the drawbacks of optimization techniques are resolved by combining the merits of both heuristic and 

metaheuristic approaches.  

In this paper, GA is merged with Dove Swarm Optimization (DSO) Algorithm to develop a hybrid 

algorithm named Genetic Dove Swarm Optimization (GDSO) for solving the TS problem. This method 

considers the TS process as a multi-objective problem and solves this problem through an effective 

optimization approach. This method uses the foraging behaviour of the dove swarms from the DSO 

algorithm to solve the multi-objective TS problem. GA enhances the DSO performance to obtain the 

optimal solution with reduced delay. This hybrid algorithm reduces the cost of execution, response time, 

energy consumption, execution time, bandwidth utilization and CPU utilization. The main objectives of 

this paper are to formulate the Multi-objective problem related to task scheduling so that the performance 

of the task scheduling process with reduced execution delay problem. 

This paper is arranged as follows: The points noted in existing work are presented in Section 2. The 

proposed GDSO technique is explained in Section 3. The performance achieved by GDSO and existing 

methods in task scheduling is discussed in Section 4, and conclusions are presented in Section 5. 

 

2. LITERATURE REVIEW  

Many optimization algorithms have been utilized in recent years for the problem of TS based on multiple 

criteria. Some of the most recent methods are discussed in this section. Gawali and Shinde [8] integrated 

improved Bandwidth Aware Divisible Scheduling (BATS), Longest Expected Processing Time Pre-

emption (LEPT), Modified Analytic Hierarchy Process (MAHP) and divide-and-conquer technique for 

resource allocation and task scheduling in cloud systems. Initially, MAPH is implemented to assign a rank 

to each task. Then the task allocation procedure is carried out using the improved BATS technique. Next, 

LEPT is implemented to prevent tasks that are resource intensive. Further, Divide and Conquer procedure 

provides an optimal solution to enhance the model’s performance. This model is evaluated using 

Epigenomics scientific tasks, and Cybershake seismogram synthesis datasets and the performance is 

measured using the utility of bandwidth, CPU and memory. The performance of this model is compared 

with BATS and the improved differential evolution algorithm (IDEA), and it observed that improved 

BATS gained better performance. However, this model has a low convergence speed. Kumar and 

Kousalya [9] deployed Crow Search Algorithm (CrSA) to schedule the tasks in cloud systems. In this 

approach, the makespan of task scheduling is reduced using CrSA. This model is implemented using the 

CloudSim tool, and observed that it reduces the makespan more than prevailing models. However, this 

model considers only makespan in task scheduling. Bezdan et al. [10] used Exploration Enhanced- Flower 

Pollination Algorithm (EE-FPA) for TS in cloud. In this approach, the makespan of task scheduling is 

minimized using EEFPA. The effectiveness of this model is tested on the CloudSim tool and noted that it 

had a reduced makespan of 6.67% compared to FPA, 4.11% for Performance Budget –ACO (PBACO), 

53.02 for ACO, 29.29% for min-min and 63.92% for First Come First Serve (FCFS) allocation method 

while analyzing with 600 tasks. However, this model not considers other factors affecting the task 

scheduling process of the cloud system. Rjoub et al. [11] developed a model utilizing deep reinforcement 

learning combined with LSTM (DRL-LSTM) for task scheduling. In this approach, resource utilization 

on TS is reduced. This model was evaluated on the Google cluster dataset. The DRL-LSTM model reduced 

the utilization of RAM cost by 72%, which is better than other methods. However, this model has 

increased computational overhead. 

Velliangiri et al. [12] enhanced the TS behaviour using Hybrid Electro Search with GA (HESGA). In this 

approach, the best local solution is obtained using GA, whereas the global best solution is achieved 

utilizing Electro Search (ES) technique. This model is experimented with the Cloudsim tool and noted 
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that it has better makes span, response time and cost than Hybrid PSO-GA, ES, ACO and GA. However, 

a lesser number of parameters is taken to analyze the model. Elaziz and Attiya [13] referred to the 

improved Henry Gas Solubility Optimization (HGSO) technique for efficient TS in the cloud. This model 

employs WOA and opposition-based learning approaches to enhance HGSO’s performance in task 

scheduling. This modification increases the converging speed. This model is examined on real NASA 

iPSC and synthetic datasets, achieving a better makespan. However, this model has high complexity. 

Abualigah and Diabat [14] modified the antlion optimization algorithm (AOA) for effective task 

scheduling. In this approach, AOA is improved using elite-based differential evolution to diminish the 

makespan and utility of resources. The performance of improved AOA is tested on real and synthetic 

datasets. On experimenting, modified AOA has faster convergence than other methods, which shows its 

ability to work on significant scheduling problems. The modified AOA approach attained a 16.55 % 

improved ratio on 2000 tasks for the HPC2N dataset and 17.01% for the NASA Ames dataset with the 

same number of tasks. However, this method used few parameters for performance evaluation. Gupta et 

al. [15] resolved the task scheduling issues by performing a few modifications in Heterogeneous Earliest 

Finish Time (HEFT) technique. In this approach, the ranks of each task and idle slots are computed to 

enhance the task-scheduling process. Furthermore, it optimally assigns the resources to the cloud 

environment. This model’s effectiveness is tested on 100 diverse problems with a size of 80. The 

performance is measured as schedule length, and it is noted that the updated HEFT algorithm performs 

better than others. However, the complexity of this method is not reduced. 

Bal et al. [16] suggested Cat Swarm Optimization (CSO) and Group Optimization-based Deep Neural 

Network (GO-DNN) methods for task scheduling and resource allocation in the cloud environment. This 

method increases the throughput utilizing CSO’s optimal scheduling approach and reduces the total 

makespan. These techniques are simulated utilizing a cloudlet simulator. The effectiveness is measured 

as energy consumption, resource utilization and response time and observed that the integration of CSO 

and GO-DNN performs better than other models. However, the effectiveness of this model is not tested 

on real-time data. Abdullahi et al. [17] developed a constrained multi-objective Adaptive Benefit Factors 

Based Symbiotic Organisms Search (ABFSOS) methodology for TS. This approach increases 

convergence speed by balancing the global and local search procedures. This model is evaluated utilizing 

synthetic and standard workload datasets on the Cloudsim tool. The performance of ABFSOS is compared 

with existing EMS-C and ECMSMOO approaches and attained the performance improvement of 17.02-

47.73% for EMS-C and 19.98-52.18% for ECMSMOO. However, this model has high computational 

complexity. Amer et al. [18] enhanced the performance of cloud resources by task scheduling utilizing the 

updated Harris Hawks Optimization (HHO) technique. This method solves the multi-objective scheduling 

problem using the HHO method. Furthermore, HHO uses an opposition-based learning approach to 

improve its exploration quality. This model is evaluated on the real-time dataset, and its effectiveness is 

contrasted against existing models with the performance metrics such as balancing degree, resource 

utilization, throughput, schedule length and execution cost. While analyzing the result, modified HHO 

performs better than other models. 

Bezdan et al. [19] propose a hybrid bat algorithm (BA) for task scheduling. At first, the bee search 

algorithm is implemented to balance the exploration and exploitation process that BA does not perform. 

In addition, the quasi-reflection-based learning (QRBL) approach is employed to enhance searchability. 

Using these approaches, task scheduling effectiveness was improved regarding makes span and cost of 

operation. This model was evaluated on HPC2N, NASA Ames iPSC/860 and synthetic datasets with the 

Cloudsim tool. However, this model is hard to implement. Manikandan et al. [20] integrated Random 

Double Whale Optimization Algorithm (RD-WOA) and Bee Algorithm (BA) for effectively scheduling 

the tasks. In this approach, the multi-objective task scheduling problem is solved using RDWHOA. Then, 

mutation operators of BA are implemented on RDWHOA to achieve the optimal solution for TS. This 

model is executed on the Cloudsim tool, and noted that it reduces the time taken for execution. Rajakumari 



 
 

 
19                                                      Vol.19, No.02(IV), July-December :  2024 

 

et al. [21] improved task scheduling using Fuzzy Hybrid-Particle Swarm Parallel ACO (FH-PSPACO) 

technique. In this approach, Dynamic Weighted Round-Robin (DWRR) procedure is implemented as the 

first step for task scheduling. The second step solves the execution delay problem in DWRR utilizing the 

hybrid PSPACO method. Finally, task scheduling is implemented with the assistance of the fuzzy logic 

system. This hybrid model is executed using the Cloudsim tool. While experimenting, FH-PSPACO 

outperformed the standard DWRR and PSPACO models. 

Abualigah and Alkhrabsheh [22] recommended the TS method based on a hybrid Multi-Verse Optimizer 

with GA (MVO-GA). In this approach, the performance of task transfer is improved by utilizing the MVO-

GA method. This model is implemented on MATLAB tool and evaluated using different datasets. The 

experimental outcome reveals that MVO-GA performs better on task scheduling than prevailing 

approaches. However, the effectiveness of this model is not assessed on a large dataset. Imene et al. [23] 

used the third-generation Non-dominated Sorting GA (NSGA-III) method for task scheduling. This 

approach resolved the multi-objective problem of task scheduling utilizing the NSGA-III procedure. 

Different parameters are taken for the performance evaluation of NSGA-III, and it is compared against its 

previous version NSGA-II. NSGA-III decreased the power consumption, runtime and operational cost. 

Nabi et al. [24] introduced an optimal TS approach based on Adaptive PSO (APSO) technique. The APSO 

technique achieves optimal scheduling in this approach, balancing local and global searches. This model 

is evaluated on the Cloudsim tool and observed that it attains the performance improvement of 10% on 

makespan, 12% on throughput and 60% on resource utilization. However, the response time of this system 

is not significant. 

Mahmoud et al. [25] employed Decision Tree (DT) algorithm for TS in the cloud environment. This 

approach minimizes the makespan and maximizes the utility of resources using the DT method. The 

benchmarks taken for evaluation are CyberShake_30, Montage_25, Epigenomics_24 and SIPHT_30 

workflows. DT has improved resource utilization by 6.81%, 4.69% and 8.27%. However, the response 

time of this system is not significant. Pradeep et al. [26] fused Cuckoo Search Algorithm (CSA) and WOA 

and named CWOA to enhance the TS process in cloud computing. This approach reduces energy usage 

and enhances the QoS of the cloud system. CWOA has improved the makespan, which is 5.62%, 2.27% 

and 4.36%; memory utilization is 19.08%, 16.75% and 19.34%. Kruekaew and Kimpan [27] proposed an 

effective TS approach utilizing the ABC and Q-learning algorithms. In this approach, the speed of the 

ABC algorithm is increased using the Q-learning algorithm. This model’s performance is assessed using 

Google Cloud Jobs, Random and synthetic workload datasets. While experimenting, ABC with Q learning 

in multi-objective optimization performs better than existing approaches. However, this model lacks 

generalizability. 

From the review, it is inferred that optimization techniques are mostly preferred to resolve TS problems 

in the cloud. However, many limitations exist in prevailing methods to effectively schedule the tasks like 

execution delay, increased complexity and reduced convergence speed. In this review, particular models 

solved the TS problem as a multi-objective problem. Still, its effectiveness is not explained with all the 

important parameters to predict task scheduling performance. 

 

3. METHODS 

3.1. Modelling TS problem 

The TS problem is considered a multi-objective problem, and it is hard to obtain the optimal solution for 

such problems. This problem is also accounted as an NP-complete problem, and it is complex to find the 

best solution within the polynomial time. This problem is solved using the GDSO methodology. The 

benefits of GA and DSO are fused to form GDSO. The GA solves multi-objective problems effectively 

but may be stuck in local optima and not provide reliable, optimal solutions. The DSO technique is 

highlighted for its effectiveness in solving the optimization problem and better time efficiency. Therefore, 
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the benefits of GA and DSO are integrated to resolve the multi-objective task scheduling problem. Using 

the GDSO approach, execution delay in TS is reduced, and it improves the cloud system’s QoS. 

The multi-objective problem of TS is formulated as, 

𝑓(𝑥) = ∑ 𝑎𝑘𝑓(𝑘 𝑥𝑘); 0 < 𝑘 ≤ 𝑛       (1) 

Where, 𝑎𝑘 denotes the assigned weight, 𝑓(𝑥𝑘) indicates the individual fitness function at 0 < 𝑘 ≤ 𝑛. The 

fitness function should generate a minimum value to achieve an effective solution. Therefore, the proposed 

GDSO model’s multi-objective fitness function for TS is modeled as an NP-complete problem. It is 

expressed as,  

𝐹(𝑥) = (𝑎1 × 𝑇𝐸𝐶) + (𝑎2 × 𝐸𝑇) + (𝑎3 × 𝑇𝑆𝑅𝑒𝑠) + (𝑎4 × 𝐸𝑖𝑗)   (2) 

Here, 𝑎1, 𝑎2, 𝑎3, 𝑎4 are the weight values and 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 = 1. 

Total expected cost (TEC): It depends on the cost of resources taken to process and transfer the files. 

The TEC is computed as, 

𝑇𝐸𝐶 = 𝑃𝑖 × 𝑃𝑐 + {∑ 𝑠𝑖𝑧𝑒(𝑓)𝑓∈𝐹𝐼𝑁𝑖
+ ∑ 𝑠𝑖𝑧𝑒(𝑓)𝑓∈𝐹𝑂𝑈𝑇𝑖

} × 𝑃𝑇𝑃𝐵   (3)  

Where, 𝑃𝑐 represents the processing cost, 𝑃𝑖  denotes the task, f specifies the files, and PTPB denotes 

processing time per byte. 

Execution time (EC): The time required to complete a specific task is known as EC.  

𝐸𝑇 = ∑
𝐸𝑇𝑖.𝑗

𝑀𝑗∈𝑀          (4) 

Here, 𝐸𝑇𝑖,𝑗 represents the predicted time of the completed task that is 𝑣𝑖, 𝑖 and 𝑗 denote the tasks. 

Response time: The time taken between the execution of tasks and task completion is defined as response 

time. In general, it is defined as the elapsed time between the request and the execution of the request. It 

is expressed as follows, 

𝑇𝑆𝑅𝑒𝑠 = 𝑇𝑆𝐶𝑇 − 𝑇𝑆𝐴𝑇          (5) 

Here, 𝑇𝑆𝐶𝑇 represent the task completion time and 𝑇𝑆𝐴𝑇 indicates the time taken to execute the tasks. 

Energy consumption: It is the consumed energy by cloud servers while allocating resources. The 

consumed energy for 𝑖-th task on 𝑗-th VM is 𝐸𝑖𝑗 and it is expressed as,  

𝐸𝑖𝑗 = 𝑃(𝑈𝑖𝑗) × 𝐶𝑇𝑖𝑗         (6) 

Where 𝑃(𝑈) = (𝑃(𝑈1) + (
𝑃(𝑈2)−𝑃(𝑈1)

10
× (𝑈 −

𝑈1

10
× 100))      

𝐶𝑇𝑖𝑗 = ∑ 𝐹𝑡𝑖 −

𝑁

𝑖=1

𝑆𝑡𝑖 

𝑈𝑖𝑗 =
𝑈𝑖𝑟𝑒𝑓 × 𝐶𝑆𝑟𝑒𝑓

𝐶𝑆𝑗
 

Here, 𝐶𝑇𝑖𝑗 denotes the completion time, 𝑈𝑖𝑗 represents the resource consumption, 𝑃(𝑈𝑖𝑗) specifies the 

depleted power, 𝑃(𝑈)denotes the depleted power at 𝑈, 𝐹𝑡𝑖  indicates the time taken to complete the task 

of  𝑗-th VM, 𝑆𝑡𝑖  denotes the 𝑗-th VM’s starting time, 𝑈𝑖𝑟𝑒𝑓 represents 𝑖-th task’s power consumption on 

reference VM, 𝐶𝑆𝑟𝑒𝑓 indicates the clock speed of the reference VM, 𝐶𝑆𝑗 indicates the clock speed of 𝑗-th 

VM. 

3.2. Genetic Dove Swarm Optimization for task scheduling 

The GDSO technique is proposed to resolve the multi-objective problem of the TS process. This approach 

uses the advantages of GA and DSO scheduling techniques, which limit local optima and increase 

convergence speed. In this approach, the global search ability of doves in DSO is enhanced using the 

genetic algorithm operators. The utilized operators of GA are crossover and mutation, which balances the 

searching ability of the dove. The DGSO technique uses the foraging behaviour of the dove in task 

scheduling. Initially, the parameters such as the initial position of the Dove, Number of doves, epoch and 
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satiety degree are given as input to initiate the GDSO algorithm. The fitness value for each dove is 

computed. 

Further, the ranks are allocated for the doves with respect to fitness value and arranged in descending 

order. Then the genetic operation is performed for the ranked  2𝑁 individuals in the flock. This genetic 

operation creates a new set of solutions, and fitness is computed for this solution. Next, the dove’s position 

near the fitness value is located. The satiety level of each dove is computed to find the dove with the best 

satiety and is considered the dove that offers the best solution. Finally, the dove having the best solution 

is selected, and the locations of other doves are updated based on the selected dove. Once the best solution 

is discovered, the termination condition is used; otherwise, the iterations are performed continuously until 

obtaining the best solution. The functional flow of the proposed GDSO is illustrated in figure 1.  

According to the rank, which is assigned based on the doves’ fitness function, the best-ranked doves are 

selected for performing the genetic operations. Initially, 2𝑁 individuals are paired, and it is crossed over 

to generate new offspring. In this stage, 20% mutation is carried out to create new individuals with better 

fitness values. After the improvement of fitness values then, the order of ranking is rearranged. Further, 

Doves are allocated in hierarchical order to form the group. Finally, the formed group with the dove that 

does not satisfy the fed initiates the foraging process, and the best location is determined by the dove 

having the best solution. This process is performed for maximum iterations to discover the best location 

where the solution is found. The best location is continuously updated to improvise the effectiveness of 

finding optimal solutions. 

 
Figure.1.Flow Diagram of Proposed GDSO Method 
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The objective function of GDSO is 𝑓(𝑊). Here 𝑊 denotes the position of crumbs and amount of crumbs 

in that location. The location has enormous crumbs and is considered the best location. 

At first, the counts of doves are decided to deploy in the search space. Assume 𝑁 is the number of doves 

randomly dispersed in the solution space having a uniform rectangular region. Next, the epoch number is 

defined that is 𝑒 = 0 and the degree of satiety 𝑆𝑑
𝑒 for 𝑑-th dove is fixed, where 𝑑 = 1,2 … . . 𝑁. The position 

vector is initialized as 𝑊𝑑 ⊂ 𝑅𝑀 for 𝑑-th dove. This initialization could be done in two ways: random and 

lattice-initialized methods. In this method, weight initialization is performed using two weight 

initialization schemes which enhance the training process. Assume the smallest hyper-rectangle, which 

includes the valid parameter values, and it is represented as [𝑙1,𝑢1], … … [𝑙𝑀,𝑢𝑀] where, 𝑙𝑀  and 𝑢𝑀 

representing the low and upbound of 𝑀 dimensions in the search space. The suggested initialization 

procedure is to compress the hyper–rectangle with n-dimensions into a 2-dimensional plane to cover the 

solution space effectively. 

This method, 𝑖 and 𝑗 are used to represent the rectangular cells from 1 to 𝐴 × 𝐵. The initialization steps 

are explained as follows. At first, cells on four corners are initialized, and their formulation is expressed 

in equation (7). 

𝑤1,1 = (𝑙1, 𝑙2, … . 𝑙𝑀)𝑇  

𝑤𝐴,𝐵 = (𝑢1, 𝑢2, … . 𝑢𝑀)𝑇  

𝑤1,𝐵 = (𝑙1, 𝑙2, … . 𝑙
⌊
𝑀
2

⌋
, 𝑢

⌊
𝑀
2

⌋+1
, … . 𝑢𝑀)

𝑇

  

𝑤𝐴,1 = (𝑢1, 𝑢2, … . 𝑢
⌊

𝑀

2
⌋
, 𝑙

⌊
𝑀

2
⌋+1

, … . 𝑙𝑀)
𝑇

       (7) 

Next, cells are initialized in the four edges, and it is formulated as follows: 

𝑤1,𝑗 =
𝑤1,𝐵−𝑤1,1

𝐵−1
(𝑗 − 1) + 𝑤1,1= 

𝑗−1

𝐵−1
𝑤1,𝐵+

𝐵−𝑗

𝐵−1
𝑤1,1 for 𝑗 = 2, … … . 𝐵 − 1 

𝑤𝐴,𝑗 =
𝑤𝐴,𝐵−𝑤𝐴,1

𝐵−1
(𝑗 − 1) + 𝑤𝐴,1= 

𝑗−1

𝐵−1
𝑤𝐴,𝐵+

𝐵−𝑗

𝐵−1
𝑤𝐴,1 for 𝑗 = 2, … … . 𝐵 − 1 

𝑤𝑖,1 =
𝑤𝐴,1−𝑤1,1

𝐴−1
(𝑖 − 1) + 𝑤1,1= 

𝑖−1

𝐴−1
𝑤𝐴,1+

𝐴−𝑖

𝐴−1
𝑤1,1 for 𝑖 = 2, … … . 𝐵 − 1 

𝑤𝑖,𝐵 =
𝑤𝐴,𝐵−𝑤1,𝐵

𝐴−1
(𝑖 − 1) + 𝑤1,𝐵= 

𝑖−1

𝐴−1
𝑤𝐴,𝐵+

𝐵−𝑖

𝐵−1
𝑤1,𝐵 for 𝑖 = 2, … … . 𝐵 − 1  (8) 

Next, the corner neuron’s weight vectors are initialized. Further, the remaining neurons are initialized 

from top to bottom and left to right. The learning rate’s initial value is fixed as 0.1, and the reduction rate 

is represented as, 

𝜂(𝑛) = 𝜂0 × (1 −
𝑡

𝑇
) = 0.1(1 −

𝑡

100
)      (9) 

Where 𝜂0 representing the learning rate, and 𝑡 denotes the iterative number. Next, the fitness value, 𝑓(𝑤𝑗
𝑒) 

that is 𝐹(𝑥) of all doves are computed 𝑗 = (1, . … 𝑁) in every epoch as the total number of crumbs in 𝑑-

th dove’s position. The fitness value is computed using equation (2) in this work.  

In the next stage, selected doves are ranked with respect to fitness value, and 2𝑁 individuals are taken to 

perform the genetic operations. This enhances the performance of GDSO by increasing its searchability. 

Genetic operations such as crossover and mutation are performed to get the new search with the best 

fitness values. Here, 2𝑁 individuals are selected to perform mutation and crossover.  

Here, the binomial crossover strategy combines the dove placed in the best and worst locations using the 

following steps. The 𝑖-th best dove is expressed as 𝐻𝑖 = (ℎ𝑖1, ℎ𝑖2, … . , ℎ𝑖𝑑) and its mutants are specified 

as 𝐹𝑀𝑖 = (𝑓𝑚𝑖1, 𝑓𝑚𝑖2, … . , 𝑓𝑚𝑖𝑑). These two terms are combined to get the crossover dove  𝐹𝐶𝑖 =
(𝑓𝑐𝑖1, 𝑓𝑐𝑖2, … . , 𝑓𝑐𝑖𝑑). The performed crossover strategy is expressed as follows,   

𝑓𝑐𝑖𝑗 = {
𝑓𝑚𝑖𝑗      𝑖𝑓 𝑟𝑗 ≤ 𝐶𝑅 𝑜𝑟 𝑗 = 𝑗𝑚𝑎𝑥

ℎ𝑖𝑗        𝑖𝑓 𝑟𝑗 > 𝐶𝑅 𝑎𝑛𝑑 𝑗 ≠ 𝑗𝑚𝑎𝑥
      (10) 
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Where 𝑟𝑗 indicates the random number uniformly distributed in [0, 1], 𝑗𝑚𝑎𝑥 represent the arbitrary integer 

lies between [1, d]. The crossover rate is denoted as 𝐶𝑅 which is utilized to determine the amount of 

genetic information that should be passed to crossover dove 𝑓𝑐𝑖𝑗. This crossover rate linearly decreases 

based on the iterations, and it is expressed as follows, 

𝐶𝑅(𝑘) = 𝑐𝑟𝑚𝑎𝑥 − (𝑐𝑟𝑚𝑎𝑥 − 𝑐𝑟𝑚𝑖𝑛)
𝑘

𝐾
      (11) 

Where, 𝑐𝑟𝑚𝑎𝑥   representing the maximum value of CR and 𝑐𝑟𝑚𝑖𝑛 representing the minimum value of 𝐶𝑅, 

𝐾 indicates the number of iterations. 

The dove’s mutation strategy is expressed as,  

𝑓𝑚(𝑖, 𝑗) = 𝑀𝑏𝑒𝑠𝑡𝑗
+ 𝑄. (ℎ𝑙1,𝑗 − ℎ𝑙2,𝑗) + 𝑄. (ℎ𝑙3,𝑗 − ℎ𝑙4,𝑗)    (12) 

Where, 𝑓𝑚(𝑖, 𝑗) indicates the location of 𝑖-th mutant dove with respect to the aspect 𝑗, 𝑀𝑏𝑒𝑠𝑡𝑗
 indicates 

the location of the best dove obtained by performing a number of iterations. 𝑙1 ≠ 𝑙2 ≠ 𝑙3 ≠ 𝑙4 ≠ 𝑖 ∈ {1, 𝑛} 

denotes the randomly selected doves 𝑄 represents the function used to generate homogeneously 

distributed arbitrary numbers [0, 1]. The differences (ℎ𝑙1,𝑗 − ℎ𝑙2,𝑗) and (ℎ𝑙3,𝑗 − ℎ𝑙4,𝑗) are regulated 

utilizing the function 𝑄 as per the problem. This regulation ensures the optimal variability of the 

population in both local and global searches. 

After executing the crossover and mutation operations, the newly formed doves are stored in the new 

solution set. This newly formed solution set is used for obtaining the optimal solution. Further, the fitness 

value is computed for the doves in the new solution set and ranked based on the fitness value. This process 

helps in finding the optimal solution. 

After finding the set of new solutions, dove 𝑑𝑗
𝑒 is located near where the optimal solution is found are 

identified utilizing either maximum or minimum criterion at epoch 𝑒. This work focussed on minimizing 

the values of response time, expected cost, energy consumption and execution time. Therefore, a minimum 

criterion is taken for finding the optimal solution. It is represented as follows, 

𝑑𝑗
𝑒 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝑓(𝑤𝑗

𝑒)}, 𝑓𝑜𝑟 𝑗 = 1,2 … . 𝑁      (13) 

Then, the satiety of each dove is updated using the below equation, 

𝑆𝑗
𝑒 = {

𝜆𝑆𝑗
𝑒−1 + 𝑒(𝑓(𝑤𝑗−𝑓(𝑤𝑑𝑓)),      if 𝑓(𝑤𝑑𝑓) ≠ 0

𝜆𝑆𝑗
𝑒−1 + 1,    𝑖𝑓  𝑓(𝑤𝑑𝑓) = 0

, 𝑓𝑜𝑟 𝑗 = 1,2 … . 𝑁   (14) 

The most satisfied dove 𝑑𝑗
𝑒 with the highest degree of satiety, the dove with the optimal solution is selected 

utilizing the minimum criterion. The selected dove in equation (15) has the best foraging behaviour, and 

other doves use this in the flocks to have the feed. This dove is taken to solve the multi-objective problem 

in TS. It is represented as, 

𝑑𝑠
𝑒 = arg max

1≤𝑗≤𝑁
{𝑆𝑗

𝑒}, 𝑓𝑜𝑟 𝑗 = 1,2 … 𝑁      (15) 

Next, the position vector of each dove is updated utilizing the minimum criterion. In equation (16), the 

learning rate for updating the position vector of the dove is denoted as 𝜂. When the dove tries to follow 

the foraging behaviour of the best dove, it moves toward the position of the best dove to discover more 

food. This learning is simulated by modifying 𝑤𝑗
𝑒, a position vector, and it could be the dove with the 

highest degree of satiety. The updation is expressed as, 

𝑤𝑗
𝑒+1 = 𝑤𝑗

𝑒 + 𝜂𝛽𝑗
𝑒(𝑤𝑑𝑠

𝑒 − 𝑤𝑗
𝑒)       (16) 

Here, 𝛽𝑗
𝑒 = (

𝑆𝑏𝑠
𝑒 −𝑆𝑗

𝑒

𝑆𝑏𝑠
𝑒 ) (1 −

‖𝑤𝑗
𝑒−𝑤𝑑𝑠

𝑒 ‖

𝑚𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
)      (17) 

𝑚𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒: max
1≤𝑗≤𝑁

‖𝑤𝑗
𝑒 − 𝑤𝑑𝑠

𝑒 ‖      (18) 
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Suppose the dove has a high degree of satiety. In that case, it does not change its foraging behaviour, 

whereas the dove with a low degree of satiety strongly desires to alter its foraging behaviour and is 

probably based on the best individual’s behaviour. This change is done by adjusting (
𝑆𝑏𝑠

𝑒 −𝑆𝑗
𝑒

𝑆𝑏𝑠
𝑒 ) of Eq. (17). 

Normally, doves’ social impact degrades when it spreads out. Hence, the degree of impact is always 

inversely proportional to the distance between the best dove and other doves in the flock. This change is 

simulated by adjusting the amount proportional to the value of (1 −
‖𝑤𝑗

𝑒−𝑤𝑑𝑠
𝑒 ‖

𝑚𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
) in Eq. (17). 

After the updation stage, the number of epochs is increased, which is given in Eq. (13), until it reaches the 

termination condition. The condition used for termination is expressed as follows, 

|𝑓𝑑𝑠

𝑒 − 𝑇(𝑒)| ≤ 𝜀𝑜𝑟𝑒 ≤ 𝑠𝑒𝑡 max 𝑒𝑝𝑜𝑐ℎ     (19) 

Similarly, if the optimization is taken as the maximum criterion, which means the best solution is finding 

of maximum 𝑤𝑗
𝑒, then the equations (13) and (14) are changed as follows.  

𝑑𝑗
𝑒 = 𝑎𝑟𝑔𝑚𝑎𝑥{𝑓(𝑤𝑗

𝑒)}, 𝑓𝑜𝑟 𝑗 = 1,2 … . 𝑁     (20) 

𝑆𝑗
𝑒 = 𝜆𝑆𝑗

𝑒−1 + 𝑒(𝑓(𝑤𝑗−𝑓(𝑤𝑑𝑓)), 𝑓𝑜𝑟 𝑗 = 1,2 … 𝑁    (21) 

 By following the foraging behaviour of the dove, the multi-objective optimization problem in TS 

is resolved with the influence of operations of GA utilizing the proposed GDSO methodology. The multi-

objective problems, such as 𝐸𝑖𝑗, 𝑇𝑆𝑅𝑒𝑠, 𝐸𝑇, and 𝑇𝐸𝐶 are solved for task scheduling, and the optimal 

solution is obtained, which enhances the performance of the cloud system. 

Algorithm 1: GDSO for task scheduling 

Determine VM’s task numbers 

Initialize population of Doves X  

Set initial position, other parameters 

Establish the fitness function utilizing Eq. (2) 

Set Iterations 𝑖𝑡 = 0,  

For each Dove 

Calculate the fitness values 

Assign ranks to dove based on fitness value and arrange them in descending order 

Select 2𝑁 individuals from the arrangement 

Perform crossover, 𝑓𝑐𝑖𝑗 = {
𝑓𝑚𝑖𝑗     𝑖𝑓 𝑟𝑗 ≤ 𝐶𝑅 𝑜𝑟 𝑗 = 𝑗𝑚𝑎𝑥

ℎ𝑖𝑗        𝑖𝑓 𝑟𝑗 > 𝐶𝑅 𝑎𝑛𝑑 𝑗 ≠ 𝑗𝑚𝑎𝑥
  

Perform mutation,  𝑓𝑚(𝑖, 𝑗) = 𝑀𝑏𝑒𝑠𝑡𝑗
+ 𝑄. (ℎ𝑙1,𝑗 − ℎ𝑙2,𝑗) + 𝑄. (ℎ𝑙3,𝑗 − ℎ𝑙4,𝑗)  

Calculate the fitness value for the new solution using Eq. (2) 

Locate the position of the dove with the optimal solution using Eq. (13) 

Updation of satiety degree of dove using Eq.(14) 

Selection of dove with high satiety degree using Eq.(15) 

Update the position vector of other doves based on Eq.(16) 

Increase the iterations to obtain the optimal solution 

When the termination condition is satisfied, the process gets ended 

Else it repeats the steps from assessing the fitness function 

End 

 

4. RESULTS AND DISCUSSION 

The experiments are conducted to evaluate the performance of the proposed GDSO technique in task 

scheduling utilizing CloudSim 3.0.3 simulation tool. Multiple isolated tasks are created utilizing Planet 

lab workload traces to evaluate the performance of GDSO. The planet lab workload incorporates hundreds 
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of VM’s CPU utilization data in which 500 servers worldwide are included. The experiments are 

conducted on Intel® core i5 processor with 1.8GHz CPU frequency, 8GB RAM and Windows 10 

operating system using Netbeans and JDK 11. The configuration used in CloudSim for evaluating GDSO 

is presented in Table 1. 

Table.1. Simulation parameter settings 

Unit Parameter Value 

Data Centre Capacity 1 

Category Heterogeneous 

Link delay (milliseconds) 10-100 

Bandwidth (Gbps) 2-20 

Host Number 10 

Cores 2-8 

RAM (MB) 2048 

Memory (MB) 500000 

bandwidth (bps) 5000 

VM Number 10-100 

CPU (MIPS) 2000 

RAM (MB) 1024 

Bandwidth (bps) 2000 

Cores per VM 1 

Task Count 2000 

Length of task (MI) 100-1000 

Size of task 100-500 

Iterations 10 - 30 

 

The efficacy of the proposed model is measured in terms of Total expected cost (TEC), Execution time, 

Response time and energy consumption. The values obtained by these measures for 20 VM’s data with 

multiple numbers of tasks are presented in table 2. 

Table.2. Performance Outcome of proposed GDSO (VMs= 20) 

Number 

of tasks 

Energy 

Consumption 

(J) 

Total 

Expected 

Cost ($) 

Execution 

Time 

(ms) 

Response 

time 

(seconds) 

CPU 

Utilization 

(%) 

Bandwidth 

Utilization 

(%) 

25 0.4318 37 3.9 0.002421 29.564 6.91 

50 0.6801 64 6.98 0.004263 43.478 9.01 

75 1.3734 84 8.9 0.004721 55.685 10.32 

100 2.4751 111 11.3 0.00618 70.498 11.96 

The outcome of GDSO in 20 VM data shows that the consumption of energy increases with the number 

of tasks executed. Likewise, the Execution time, total expected cost and response time of the proposed 

GDSO technique is increased when the number of tasks is increased. The energy consumption of GDSO 

in 25 tasks is 0.4318 J, increasing to 57.50% for 50 tasks, 218.06% for 75 tasks and 473.20% for 100 

tasks. The TEC for 25 tasks is 37$, which increases to 72.97$ for 50 tasks, 127.02% for 75 and 200% for 

100 tasks. The CPU utilization for 25 tasks is 29.564%, increasing to 13.91% for 50 tasks, 26.12% for 75 

and 41% for 100 tasks. The bandwidth utilization of 25 tasks is 6.91% which increases upto 2.1%, 3.41% 

and 5.05% for 50, 75 and 100 tasks. ET for 25 tasks is 3.9 s which is 3.08ms, 5ms, and 7.4ms less compared 

to 50, 75 and 100 tasks. The response time taken for 25 tasks is 0.002421, which is 0.001842s, 0.0023s 

and 0.03759 less compared to 50, 75 and 100 tasks. 
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Table.3. Performance Outcome of proposed GDSO (VMs= 100) 

Number 

of tasks 

Energy 

Consumption 

(J) 

Total 

Expected 

Cost ($) 

Execution 

Time 

(ms) 

Response 

time 

(seconds) 

CPU 

Utilization 

(%) 

Bandwidth 

Utilization 

(%) 

200 6.93 197 22.32 0.0132 78.496 16.87 

400 11.753 232 23.99 0.01553 81.124 21.387 

600 12.301 255 27.89 0.0185 83.458 25.489 

800 17.457 275 35.0 0.02275 87.49 29.897 

1000 24.853 301 42.16 0.02734 90.01 32.036 

 Table 3 represents the outcome of GDSO while evaluating 100 VMs data. Here, the number of 

tasks, such as 200, 400, 600, 800, and 1000 are evaluated. The energy consumed by the proposed GDSO 

in 200 tasks with 100 VMs is 6.9J which increases upto 69.59%, 151.90%, and 258.62% for 400, 600,800 

and 1000 tasks. Likewise, TEC for 200 tasks is 197$, increasing by 17.76%, 29.44%, 39.59% and 52.79%. 

CPU utilization for 200 tasks is 78.496%, increasing by 2.62%, 4.962%, 8.99% and 11.51%. Bandwidth 

utilization for 200 tasks is 16.87%, increasing to 4.51%, 8.61%, 13.02% and 15.16%. The execution time 

for 200 tasks is 22.32ms which is 1.67ms, 5.57ms, 12.68ms and 19.84ms less. The response time taken 

for 200 tasks is 0.0132, which is 0.00233s, 0.0053s, 0.00955s and 0.01414s less than 400, 600,800 and 

1000 tasks. The performance measures gained effective results while executing with less number of tasks. 

But, the values of performance measures increase proportionally to the number of tasks. However, the rise 

of values in 𝐸𝑖𝑗, 𝑇𝑆𝑅𝑒𝑠, 𝐸𝑇, and 𝑇𝐸𝐶 are considerably low compared to the existing approach. This shows 

the superiority of the proposed GDSO model. 

 
Figure.2. Comparison of Energy Consumption 

Figure 2 displays the energy consumption comparison of the task scheduling process in the proposed 

GDSO and existing methodologies. The energy consumption analysis of 20 VMs is given. The energy 

consumed by the proposed GSDSO is 2.4751J which is about 74.05%, 69.45%, 68.86%, 67.77%, 61.38%, 

and 49.03% reduction compared to prevailing TS models such as CrSA, EE-FPA, HGSO, AOA, RD-

WOA, and CWOA for executing 100 tasks. The result indicates that energy consumed by GDSO in the 

task scheduling process is too low compared to existing approaches. 

 
Figure.3. Comparison of Execution Time 
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Figure 3 illustrates an execution time comparison between the proposed GDSO and existing approaches. 

The proposed GDSO executes 100 tasks in 11.3ms, 7.65ms, 5.68ms, 4.72ms, 4.29ms, 3.5ms, and 1ms 

lower than CrSA, EE-FPA, HGSO, AOA, RD-WOA, and CWOA methods. The execution time is low in 

executing 25 tasks but increases with respect to the count of the tasks. 

 
Figure.4. Comparison of Response Time 

Figure 4 represents the response time comparison of the proposed GDSO and existing methods. The 

response time of 20 VM data is taken for comparison. The response time taken for processing 100 tasks 

by proposed GDSO is 0.00618s, and it is 0.06162s, 0.03262s, 0.03002s, 0.01352s, 0.01272s and 0.00369s 

less than CrSA, EE-FPA, HGSO, AOA, RD-WOA, and CWOA models. Like the other performance 

measures, the response time increases based on task counts. The response time of executing 25 tasks is 

low compared to executing 50, 75 and 100 tasks, but it gradually increases based on tasks. 

 
Figure.5. Comparison of Total expected cost (TEC) 

Figure 5 displays the TEC analysis of suggested GDSO and existing approaches. The TEC of the proposed 

GDSO model is less compared to other approaches. The figure shows the cost analysis of 20 VMs with 

25, 50, 75 and 100 tasks. While observing the outcome, the cost of the task scheduling process increases 

with the number of tasks. The TEC of the proposed GDSO is 111$, about 13.95%, 9.01%, 7.5%, 5.9%, 

5.12%, and 3.47% reduction than CrSA, EE-FPA, HGSO, AOA, RD-WOA, and CWOA approaches. 

 
Figure.6. CPU Utilization 
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Figure 6 compares CPU utilization of proposed GDSO and prevailing task scheduling approaches. The 

CPU utilization of the proposed GSDO model is less compared to existing methods. The proposed GDSO 

attained the CPU utility of 70.49% in 100 tasks with 20 VMs. The CPU utilization decreased by 11.3% 

compared to CrSA, 8.66% for EE-FPA, 6.83% for HGSO, 5.49% for AOA, 2.96% for RD-WOA, and 

0.96% for CWOA. 

 
Figure.7. Bandwidth Utilization 

Figure 7 presents the Bandwidth utilization of suggested GDSO and existing task scheduling methods. 

The GDSO method uses reduced bandwidth compared to other methods. The bandwidth utilization of the 

proposed GDSO is 11.96% while processing 100 tasks in 20 VMs. It is about 7.05%, 6.36%%, 4.89%, 

4%, 2.69%, and 1.3% reduction compared to the existing methods such as CrSA, EE-FPA, HGSO, AOA, 

RD-WOA, and CWOA. 

The performance evaluation of the proposed GDSO indicates that it achieved better performance in TS 

compared to existing approaches. This method solves the execution delay problem and enhances the TS 

process’s efficiency. Hence, the GDSO technique could be utilized for an effective task-scheduling 

process. 

 

5. CONCLUSION 

 This paper presented an effective task-scheduling approach to solve the execution delay problem. 

The proposed task scheduling approach uses Genetic Dove Swarm Optimization (GDSO), which is 

constructed by combining GA and DSO approaches. The GDSO solved the multi-objective problem and 

enhanced the efficacy of the task-scheduling process. This model is simulated utilizing the CloudSim tool. 

The evaluation result shows that the suggested GDSO model has achieved better performance than 

existing approaches. The performance indicators such as energy consumption, execution time, response 

time, total expected cost, CPU utilization and bandwidth utilization are used for evaluation. In future, the 

possibility of enhancing the security and reliability in scheduling trusted tasks will be investigated. Also, 

the possibility of reducing task execution time through parallel processing will be examined. 
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